Sic-povms and the Extended Clifford Group

نویسنده

  • D M APPLEBY
چکیده

We describe the structure of the extended Clifford Group (defined to be the group consisting of all operators, unitary and anti-unitary, which normalize the generalized Pauli group (or Weyl-Heisenberg group as it is often called)). We also obtain a number of results concerning the structure of the Clifford Group proper (i.e. the group consisting just of the unitary operators which normalize the generalized Pauli group). We then investigate the action of the extended Clifford group operators on symmetric informationally complete POVMs (or SIC-POVMs) covariant relative to the action of the generalized Pauli group. We show that each of the fiducial vectors which has been constructed so far (including all the vectors constructed numerically by Renes et al) is an eigen-vector of one of a special class of order 3 Clifford unitaries. This suggests a strengthening of a conjecture of Zauner's. We give a complete characterization of the orbits and stability groups in dimensions 2–7. Finally, we show that the problem of constructing fiducial vectors may be expected to simplify in the infinite sequence of dimensions 7, 13, 19, 21, 31,. .. . We illustrate this point by constructing exact expressions for fiducial vectors in dimensions 7 and 19.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On SIC-POVMs in Prime Dimensions

The generalized Pauli group and its normalizer, the Clifford group, have a rich mathematical structure which is relevant to the problem of constructing symmetric informationally complete POVMs (SIC-POVMs). To date, almost every known SIC-POVM fiducial vector is an eigenstate of a “canonical” unitary in the Clifford group. I show that every canonical unitary in prime dimensions p > 3 lies in the...

متن کامل

On Sic-povms and Mubs in Dimension 6

We provide a partial solution to the problem of constructing mutually unbiased bases (MUBs) and symmetric informationally complete POVMs (SIC-POVMs) in non-prime-power dimensions. An algebraic description of a SIC-POVM in dimension six is given. Furthermore it is shown that several sets of three mutually unbiased bases in dimension six are maximal, i.e., cannot be extended.

متن کامل

Construction of all general symmetric informationally complete measurements

We construct the set of all general (i.e. not necessarily rank 1) symmetric informationally complete (SIC) positive operator valued measures (POVMs), and thereby show that SIC-POVMs that are not necessarily rank 1 exist in any finite dimension d. In particular, we show that any orthonormal basis of a real vector space of dimension d 2 − 1 corresponds to some general SIC POVM and vice versa. Our...

متن کامل

SIC-POVMs and Compatibility among Quantum States

An unexpected connection exists between compatibility criteria for quantum states and Symmetric Informationally Complete quantum measurements (SIC-POVMs). Beginning with Caves, Fuchs and Schack’s "Conditions for compatibility of quantum state assignments", I show that a qutrit SIC-POVM studied in other contexts enjoys additional interesting properties. Compatibility criteria provide a new way t...

متن کامل

Symmetric Informationally Complete Quantum Measurements

We consider the existence in arbitrary finite dimensions d of a POVM comprised of d rank-one operators all of whose operator inner products are equal. Such a set is called a “symmetric, informationally complete” POVM (SIC-POVM) and is equivalent to a set of d equiangular lines in C . SIC-POVMs are relevant for quantum state tomography, quantum cryptography, and foundational issues in quantum me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004